Graphene Innovations launches UK operations

Graphene Innovations Inc has signed a new Tier-1 partnership with Manchester University's GEIC center. The company will establish a local company (GIIM) in the UK, with plans to hire 10 employees in the next few months.

The GEIC partnership enables GIIM to equip a private lab in the facility, with access to highly specialised applications labs and equipment, plus the unique academic and engineering expertise of the world-leading graphene and 2D materials community at the University.

New graphene-based neural probes improve detection of epileptic brain signals

Researchers the UK and Spain have demonstrated that tiny graphene neural probes can be used safely to improve our understanding of the causes of epilepsy.

The graphene depth neural probe (gDNP) consists of a millimeter-long linear array of micro-transistors imbedded in a micrometer-thin polymeric flexible substrate. The transistors were developed by a collaboration between The University of Manchester’s Neuromedicine Lab and UCL’s Institute of Neurology along with their Graphene Flagship partners.

Researchers achieve precision sieving of gases through atomic pores in graphene

A team of researchers, led by Professor Sir Andre Geim at The University of Manchester, in collaboration with scientists from Belgium and China, used low-energy electrons to make individual atomic-scale holes in suspended graphene. The holes came in sizes down to about two angstroms, smaller than even the smallest atoms like helium and hydrogen.

Exponentially selective molecular sieving through angstrom pores image

The researchers report that they achieved practically perfect selectivity (better than 99.9%) for such gases as helium or hydrogen with respect to nitrogen, methane or xenon. Also, air molecules (oxygen and nitrogen) pass through the pores easily relative to carbon dioxide, which is >95% captured.

What's next for graphene in the construction industry? Graphene@Manchester's CEO sheds light on this fascinating topic

Graphene has a great potential in the construction industry, to increase the performance of materials and structures, to reduce costs and to reduce the environmental footprint of one of the world's most polluting industries.

After years of R&D, it seems as if graphene is finally get ready for commercial adoption on the market. Here's a short interview we did with James Baker, the CEO at Graphene@Manchester who's behind much of the progress we've seen recently.

SmartIR uses graphene to allow satellites to control thermal radiation

SmartIR, a spin-out of the University of Manchester, is working on a graphene-based smart coating for satellites, to allow them to control thermal radiation on demand, depending on whether a satellite’s surface is Earth’s shadow or on the side closest to the Sun.

This graphene technology is said to be a far more optimal solution as it is lightweight, has a low power consumption, can respond quickly to temperature changes, operates across the infrared spectrum, and involves no moving parts.