Frontier IP provides funding to graphene-based photonics developer CamGraPhIC

Frontier IP Group subscribed to £842,810 of loan notes from portfolio company CamGraPhIC as part of a £1.5 million loan designed to help accelerate growth of CamGraPhIC, spun out of the University of Cambridge to develop graphene-based photonics for high-speed data and telecommunications.

CamGraphIC says it is currently working with partners to fabricate proof-of-concept sample devices.

Introducing: The CVD Graphene Market Report

Graphene-Info is proud to present our new market report, The CVD Graphene Market Report. This market report, brought to you by the world's leading graphene industry experts, is a comprehensive guide to CVD graphene materials, the current industry and market status, and the promising applications in optoelectronics, bio-sensors, thermal solutions and more.

Reading this report, you'll learn all about:

  • How does CVD graphene differ from other graphene types
  • CVD graphene properties
  • Possible applications for CVD graphene
  • Available materials on the market

The report also provides a list of prominent CVD graphene research activities, a list of all CVD graphene developers and their products, datasheets and brochures from over 10 different CVD graphene makers and more.

Researchers achieve nearly 90% efficiency converting light energy into surface waves on graphene

Scientists at Russia-based MIPT and Vladimir State University have reported a nearly 90% efficiency converting light energy into surface waves on graphene. They relied on a laser-like energy conversion scheme and collective resonances.

he structure for converting laser light to surface-plasmon polaritons image

Manipulating light at the nanoscale is crucial for creating ultracompact devices for optical energy conversion and storage. To localize light on such a small scale, researchers convert optical radiation into so-called surface plasmon-polaritons. These SPPs are oscillations propagating along the interface between two materials with drastically different refractive indices — specifically, a metal and a dielectric or air. Depending on the materials chosen, the degree of surface wave localization varies. It is the strongest for light localized on a material only one atomic layer thick, because such 2D materials have high refractive indices.

New type of graphene photodetector could enable low-cost cameras for self-driving cars and robots

An international team of researchers recently reported its success in creating a new type of graphene-based photodetector.

The team integrated three concepts to achieve the new device: metallic plasmonic antennas, ultra sub-wavelength waveguiding of light and graphene photodetection. Specifically, the 2D-material hexagonal boron nitride was used as the waveguide for hyperbolic phonon polaritons, which can highly confine and guide mid-infrared light at the nanoscale. By carefully matching the nano-antenna with the phonon polariton waveguide, they efficiently funnel incoming light into a nanoscale graphene junction. By using this approach, they were able to overcome intrinsic limitations of graphene, such as its low absorption and its small photoactive region near the junction.