Versarien launches graphene-based superparamagnetic material

Versarien has announced the launch of a new hybrid nanomaterial that has superparamagnetic properties, which can be used across a range of applications, like defense and healthcare. The new material combines graphene with both iron oxide and manganese oxide nanoparticles and its development was led by Versarien's 62% owned subsidiary, Gnanomat.

The superparamagnetic material combines graphene with both iron oxide and manganese oxide nanoparticles that provide the material with magnetic properties. In return, graphene provides electrical conductivity to these electrically insulating metal oxides. Magnetic nanocomposites can readily respond to external magnetic fields which allow them to be manipulated. Potential applications of the material include the treatment of wastewater whereby pollutants are adsorbed onto the graphene surface. The material could also lends be used in biomedical and biotechnology applications, or defense applications requiring the shielding of electromagnetic fields. Magnetic manipulation could allow the recovery and recycling of the graphene, something that could not be done with normal graphene compounds.

Graphene enables scientists to gain new clarity in visualizing the quantum realm

Scientists from Princeton, the University of Leeds, the University of California and the National Institute for Material Science in Japan have used innovative techniques to visualize electrons in graphene, and found that strong interactions between electrons in high magnetic fields drive them to form unusual crystal-like structures similar to those first recognized for benzene molecules in the 1860s by chemist August Kekulé.

Scientists visualize electron crystals in a quantum superposition image

These crystals exhibit a spatial periodicity that corresponds to electrons being in a quantum superposition. The experiments also showed the Kekulé quantum crystals have defects that have no analog to those of ordinary crystals made up of atoms. These findings shed light on the complex quantum phases electrons can form because of their interaction, which underlies a wide range of phenomena in many materials.

Researchers detect abnormally strong absorption of light in magnetized graphene

Researchers from Germany's University of Regensburg, Russia's MIPT, and U.S-based University of Kansas and MIT have discovered an abnormally strong absorption of light in magnetized graphene. The effect appears upon the conversion of normal electromagnetic waves into ultra-slow surface waves running along graphene. The phenomenon could help develop new ultra-compact signal receivers with high absorption efficiency for future telecommunications.

Magnetized graphene displays abnormal light absorption image

Everyday experience teaches us that the efficiency of light energy harvesting is proportional to the absorber area, as indicated by solar panel "farms" covering large areas. But can an object absorb radiation from an area larger than itself? It appears that way, and it is possible when the frequency of light is in resonance with the movement of electrons in the absorber. In this case, the area of radiation absorption is on the order of the light wavelength squared, although the absorber itself can be extremely small.

Researchers stabilize the edges of graphene nanoribbons and measure their magnetic properties

Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have developed a method to stabilize the edges of graphene nanoribbons and directly measure their unique magnetic properties.

The team, co-led by Felix Fischer and Steven Louie from Berkeley Lab’s Materials Sciences Division, found that by substituting some of the carbon atoms along the ribbon’s zigzag edges with nitrogen atoms, they could discretely tune the local electronic structure without disrupting the magnetic properties. This subtle structural change further enabled the development of a scanning probe microscopy technique for measuring the material’s local magnetism at the atomic scale.

Researchers take a step towards achieving topological qubits in graphene

Researchers from Spain, Finland and France have demonstrated that magnetism and superconductivity can coexist in graphene, opening a path towards graphene-based topological qubits.

Schematic illustration of the interplay of magnetism and superconductivity in a graphene grain boundary imageSchematic illustration of the interplay of magnetism and superconductivity in a graphene grain boundary, a potential building block for carbon-based topological qubits Credit: Jose Lado/Aalto University

In the quantum realm, electrons can behave in interesting ways. Magnetism is one of these behaviors that can be seen in everyday life, as is the rarer phenomena of superconductivity. Intriguingly, these two behaviors are often antagonists - the existence of one of them often destroys the other. However, if these two opposite quantum states are forced to coexist artificially, an elusive state called a topological superconductor appears, which is useful for researchers trying to make topological qubits.