New project aims to turn urban waste into graphene and other useful materials

Graphenea will be taking part in a flagship project called CIRCULAR BIOCARBON, which was kicked off this week and has been awarded over €23 Million, to develop a first-of-its kind flagship biorefinery designed to turn the organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) into added-value products, from mechanical moving parts, to night vision cameras and devices for 5G telecommunications.

The project, which received full marks from the European Commission, involves 11 partners from five European countries (including Spain, Italy, Denmark, France and Germany) and is a milestone for the whole Europe owing to its implementation scale (industrial level) as well as to its replicability potential.

Researchers use HPC and experiment to refine graphene production

An international team of researchers, in an effort to produce cheap, defect-free graphene in larger quantities, have used GCS HPC resources to develop more efficient methods for producing graphene at an industrial scale.

Real-Time Multiscale Monitoring and Tailoring of Graphene Growth on Liquid Copper image

Recent research indicates that using a liquid copper catalyst may be a fast, efficient way for producing graphene, but researchers only have a limited understanding of molecular interactions happening during these brief, chaotic moments that lead to graphene formation, meaning they cannot yet use the method to reliably produce flawless graphene sheets.

Researchers design a method that enables scanning electron microscopes to see graphene growing

Researchers from the University of Surrey have designed a new method that enables common laboratory scanning electron microscopes to see graphene growing over a microchip surface in real time.

This discovery could create a way to control the growth of graphene in production factories and lead to the reliable production of graphene layers. The new technique not only produces graphene sheets reliably but also allows to use catalysts that reduce growth times from several hours to only a few minutes.

HydroGraph Clean Power closes private placement to fund commercialization of its proprietary hydrogen and graphene production technology

HydroGraph Clean Power, a Canada-based company that was formed to fund and commercialize green, cost-effective processes to manufacture graphene, hydrogen and other strategic materials in bulk, has announced that it has closed a private placement for gross proceeds of CAD$6,505,000 (over USD$5,372,000) led by PowerOne Capital Markets Limited and Haywood Securities. HydroGraph is in the process of pursuing a direct listing on the Canadian Securities Exchange.

The proceeds of the Financing will enable HydroGraph to commercialize its patented hydrogen and graphene manufacturing technology and market the end products. The Company is building a new commercial manufacturing facility which will be able to mass-produce HydroGraph’s competitive, high quality, green products.

New method to produce graphene nanoribbons could promote use in telecommunications applications

University of Wisconsin–Madison researchers have fabricated graphene into the smallest ribbon structures to date, using a method that is said to make scaling-up simple. In tests with these tiny ribbons, the scientists discovered they were closing in on the properties they needed to move graphene toward usefulness in telecommunications equipment.

Flexible, easy-to-scale nanoribbons move graphene toward use in tech applications imageImage credit: University of Wisconsin−Madison

“Previous research suggested that to be viable for telecommunication technologies, graphene would need to be structured prohibitively small over large areas, (which is) a fabrication nightmare,” says Joel Siegel, a UW–Madison graduate student in physics professor Victor Brar’s group and co-lead author of the study. “In our study, we created a scalable fabrication technique to make the smallest graphene ribbon structures yet and found that with modest further reductions in ribbon width, we can start getting to telecommunications range.”