Graphene assists in creating lighter car parts

Researchers at The University of Alabama used graphene to fabricate a lighter car hood, as part of an attempt to reduce the weight of a Chevrolet Camaro. The new hood is made of a mixture of graphene and carbon fiber, as opposed to the original hood which is made of aluminum.

Graphene enables lighter car hood image

The hood is half the weight of the original hood, a crucial adjustment as a larger team of students work to turn the Camaro into a plug-in hybrid as part of a national contest called EcoCAR 3.

Graphene joins forces with gold to enable improved neural probes

Researchers from the Daegu Gyeongbuk Institute of Science & Technology in Korea have used graphene to develop neural probes that are small, flexible and read brain signals clearly.

The probe consists of an electrode, which records the brain signal. The signal travels down an interconnection line to a connector, which transfers the signal to machines measuring and analyzing the signals. The electrode starts with a thin gold base. Attached to the base are tiny zinc oxide nanowires, which are coated in a thin layer of gold, and then a layer of conducting polymer called PEDOT. These combined materials increase the probe's effective surface area, conducting properties, and strength of the electrode, while still maintaining flexibility and compatibility with soft tissue.

Exeter team uses graphene oxide to design flexible and transparent memory devices

Researchers from the University of Exeter have developed an innovative new memory using a hybrid of graphene oxide and titanium oxide. These devices are reportedly low cost and environmentally friendly to produce, and are also suited for use in flexible electronic devices such as 'bendable' mobile phone, computer and television screens, and even 'intelligent' clothing. These devices may also have the potential to offer a cheaper and more adaptable alternative to 'flash memory', which is currently used in many common devices.

The team stated: "Using graphene oxide to produce memory devices has been reported before, but they were typically very large, slow, and aimed at the 'cheap and cheerful' end of the electronics goods market. Our hybrid graphene oxide-titanium oxide memory is, in contrast, just 50 nanometres long and 8 nanometres thick and can be written to and read from in less than five nanoseconds—with one nanometre being one billionth of a metre and one nanosecond a billionth of a second."

Polish team creates transparent cryogenic temperature sensor

Researchers from the Lodz University of Technology in Poland have designed a transparent, flexible cryogenic temperature sensor with graphene structures as sensing elements. Such sensors could be useful for any field that requires operating in low-temperatures, such as medical diagnostics, space exploration and aviation, processing and storage of food and scientific research.

Making graphene transparent cryogenic temperature sensors

The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor).

Exeter team unveils novel graphene production method that could accelerate commercial graphene use

Researchers from the University of Exeter have developed a new method for creating entire device arrays directly on the copper substrates used for commercial manufacture of graphene. Complete and fully-functional devices can then be transferred to a substrate of choice, such as silicon, plastics or even textiles.

This new approach is said to be cheaper, simpler and less time consuming than conventional ways of producing graphene-based devices, thus holding real potential to open up the use of cheap-to-produce graphene devices for a host of applications from gas and biomedical sensors to displays.