Article last updated on: Jan 29, 2019

The latest graphene ink news:

Haydale updates that partner IRPC starts graphene-enhanced face masks production

Haydale Graphene IndustriesHaydale logo has announced that its partner IRPC has now completed the development project with Haydale and started production of its new washable functionalized graphene-enhanced fabric mask.

IRPC has placed a follow-on order for 200 kilograms of Haydale’s bespoke ink, with further orders anticipated, the advanced materials group said. The face masks are currently being produced for use internally within the IRPC group, with a forecasted external order book for 2021.

Researchers examine novel inkjet-printed graphene for high‐quality large‐area electronics

Researchers from the University of Nottingham’s Centre for Additive Manufacturing (CfAM) have reported a breakthrough in the study of 3D printing electronic devices with graphene.

inkjet‐printed graphene/hBN FET imageCharacterization of the fully inkjet‐printed graphene/hBN FET. Photo from article

The scientists utilized an inkjet-based 3D printing technique to deposit inks that contained flakes of graphene, in a promising step towards replacing single-layer graphene as a contact material for 2D metal semiconductors.



Haydale reports its financial results for FY 2020

Haydale logoHaydale announced its financial results for FY2020 (which endd on 30 June, 2020). The group's revenues reached £2.95 million, down from £3.47 in FY 2019, but its net loss decreased to £4.02 million (down from £7.19 in 2019) as the company continues to implement cost savings measures.

Haydale's negative cash flow deceased by 31%, but the company still used up £3.32 million in the year and at the end of June had only £0.82 million in cash and equivalents. On September 2020 Haydale raised £2.98 million via a new share subscription.

New self-charging graphene-oxide ink battery is under development

Australian Advanced Materials has announced it is developing a graphene-oxide-based ink battery that is able to self-charge within minutes.

The cells will be created with a printable ink and designed to generate electricity from humidity in the air or skin surface to self-charge without any manual charging or wired power required. It was said the batteries will be ideally suited for use in Internet of Things (IoT) devices.

Researchers develop graphene-based supercapacitor to power wearable skin sensors

Researchers from the Daegu Gyeongbuk Institute of Science and Technology in South Korea have recently developed a low-cost energy storage device to power electronic devices like wearable skin sensors. The supercapacitor, made with graphene ink that is sprayed onto flexible substrates, can be used for remote medical monitoring and diagnosis on wearable devices.

Graphene inks enable flexible and mechanically durable planar supercapacitors image

Materials scientist Sungwon Lee shared that as the demand for wearable devices and remote diagnosis has increased, scientists have focused on developing electronic skin devices. The team focused on "extremely tiny and flexible energy devices as a power source."