Article last updated on: Jan 25, 2019

3D printing (or additive manufacturing) refers to a process in which a 3D printer is used for stacking layers of material under computer control, following a 3D model (or other electronic data source), resulting in a printed three-dimensional object.

ORDbot Quantum 3D printer photo

Various applications for 3D printing include design visualization and prototyping, metal casting, architecture, education, healthcare, entertainment and more. As 3D printing technology continues to evolve and develop, researchers imply possible biotechnological uses like bio-printing and computer-aided tissue engineering as well as retail manufacturing of custom end products which might change the face of commerce.

A large number of 3D printing processes exist nowadays, differing mainly in their methods of layering and the materials that are used. Some methods melt or soften material to produce layers while others use liquid materials or thin layers of material that are cut to shape and joined together. 3D printing materials are varied, and include Thermoplastics, HDPE, Rubber, edible materials, clay, metal alloy, and more. New technologies, such as infusing carbon fibers into plastics, allow for a stronger, lighter material.

Graphene, a single-atomic layer of carbon atoms arranged in a hexagonal lattice, is repeatedly dubbed a “wonder material” due to its immense array of uncanny properties like extraordinary conductivity, flexibility and transparency.

Graphene-enhanced nanocomposite materials greatly improve traditional materials used in 3D printing, like plastics. Graphene nanoplatelets that are added to polymers make materials that are mechanically stronger and with improved thermal and electrical conductivity.



Graphene 3D Labs logoGraphene 3D Lab, a joint-venture between Graphene Labs and Lomiko Metals, is one of the leaders in this new market. The company's founder and COO, Dr. Elena Polyakova comments in an interview for Graphene-info on the advantages of graphene-based materials over current 3D printing materials: “Fused Filament Fabrication (FFF) -- a method of 3D printing in which filament is extruded layer by layer to create objects -- capabilities are currently bound by the offerings of filaments, which generally includes non-functional thermoplastics. While such plastics are great for printing desktop models and fascinating gadgets, the real-world applications of printing with such filaments by themselves are limited. By creating a line of materials with functional properties, the capabilities of FFF 3D printers will be greatly expanded.

By way of example, filaments infused with graphene can be conductive and much more durable than non-specialized filaments, features which are necessary for a host of applications. We also intend to develop filaments with other functional properties, including magnetic capabilities.” as per Dr. Polyakova's words, Graphene 3D Lab is funded to begin production of printing filaments in the near future, and is working towards a target of reaching commercial production around the first half of 2015.

Graphene 3D Labs also plans to produce 3D printable batteries, based on graphene. These batteries can potentially outperform current commercial batteries, and will come in shapes and sizes that can be tailored to match the designs of specific devices. The company already unveiled a prototype battery in October 2014. In March 2015 G3L announced that it has launched commercial sales of its conductive graphene filament for 3D printing. The filament incorporates highly conductive proprietary nanocarbon materials to enhance the properties of PLA, a widely used thermoplastic material for 3D printing. The filament is therefore compatible with most commercially available 3D printers. In June 2015, the company announced the signing of a Memorandum of Understanding with Ideum, a company which develops large-scale smart-tables and walls. The agreement lays the foundation for joint research, product development, and marketing between the two companies. Graphene 3D and Ideum will evaluate and co-develop products by Graphene 3D which can be used as capacitive sensors to interface with Ideum's products. Graphene 3D will also begin commercial on-demand 3D printing of coasters, joysticks, and styluses which Ideum clients can use to interact with their smart-tables. For example, styluses of various shapes, 3D printed in Conductive Graphene Filament, may be used as brushes used in photo editing software to give a more hands-on feel to creative work done on an Ideum smart-table.

The latest graphene 3D printing news:

Graphmatech and Wematter partner to develop graphene-enhanced materials for SLS 3D printing

Swedish graphene-solutions provider Graphmatech has partnered with 3D printer manufacturer Wematter to enhance polymer powders with graphene, to make them electrically- and thermally conductive, improve processibility, and more.

Together, the two startups will develop an electrically conductive powder, tailored for Gravity – the SLS 3D printer by Wematter. The high-performance powder will enable Telecommunications, Aerospace and Automotive manufacturers to print parts with improved or maintained mechanical properties whilst achieving electrostatic dissipative (ESD), shielding, or even lower resistivity, performance.

Versarien launches Lunar 3D printed lifestyle pods

Versarien, an advanced engineering materials group and provider of graphene-enhanced cement admixture, recently announced the launch of its "Lunar" lifestyle pods. Lunar is Versarien's first 3D printed concrete product made with Cementene, Versarien's graphene-enhanced cement.

Versarien Lunar graphene cement pods image

The launch involved Neill Ricketts, CEO of Versarien, unveiling a building printed with Cementene, at the Company's production facilities in Longhope, Gloucestershire. Known as Versarien Lunar, this is a milestone project for a 3D-concrete printed product with a graphene additive. The versatile pods can be used as an office, studio, gym, or leisure room. The pod's wall design shows the level of detail, flexibility and precision that can be achieved with 3D-concrete printing.

Researchers 3D print graphene-oxide soft robots

Researchers from China’s Harbin Institute of Technology have 3D printed a soft robot from graphene-oxide that is capable of moving backward and forwards when exposed to moisture.

3D Printing Graphene Oxide Soft Robotics image

The scientists combined Direct Ink Writing (DIW) 3D printing and constrained drying techniques to fabricate the soft robot, and were able to overcome the porosity, shrinkage and structure uniformity challenges previously observed when 3D printing graphene-oxide objects.

Advanced Graphene Products to go public next week at the NewConnect market

Poland-based Advanced Graphene Products S.A. (AGP), a graphene flakes and sheet developer, announced that it will go public, with a listing on the NewConnect market, on November 29th.

AGP has an annual capacity of 100Kg for graphene flakes and 150 m2 of large-area graphene sheets. The company is currently preparing to launch a pilot sale of a graphene-based filament for 3D printing.

Haydale launches next-gen graphene-enhanced 3D printing materials

A few years ago, several graphene producers released 3D printing materials enhanced with graphene. These materials enabled conductive non-metal materials, and enhanced the mechanical and thermal properties of these 3D printing filaments.

The market reaction, though, to these materials was cool. The materials did not provide a significant improvement, the price was high, and there were better alternatives available.